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In this article we report the main experimental results obtained in the framework of
the IST ATLAS project regarding the transmission at 40 Gb/s over long terrestrial
links, including the frequency conversion of a signal. We report the single-channel
40 Gb/s transmission over a link 500 km long with an amplifier spacing of 100 km,
both with G.652 fibers and G.653 fibers by periodically compensating the chromatic
dispersion with dispersion-compensatig fibers. We report the single-channel trans-
mission at 40 Gb/s, also, after the wavelength conversion of a channel with both PPLN
and semiconductor optical amplifier devices. In particulay 500 km distances are ob-
tained with PPLN wavelength conversion and 300 km distances with semiconductor
optical amplifiers. Some results have been reported for electronic devices operating
at 40 Gb/s.
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The aim of the Information Society Technology (IST) ATLAS (All-optical Terbit per
second LAmbda Shifted transmission) project is to investigate transmission techniques
at very high capacity [1-5] over long distances (500-1000 km), taking into account the
behavior of some fundamental devices that will be used in the future Terabit/s networks,
such as the optical wavelength converters that perform routing operations in the network
nodes.

Even though experiments have demonstrated that enormous transmission capacities
can be achieved over thousands of kilometers [4], the signal behavior in propagating
through optical telecommunication high-capacity networks has not been deeply investi-
gated yet, especially with information fluxes of 40 Gb/s or more, as will be required if
the predictions about the traffic growth materialize.

Project ATLAS is aimed at answering some general questions concerning very high
capacity networks, namely, what is the maximum capacity-length product attainable in a
connection and what are the requirements for switching cross-connecting nodes. Exper-
imental investigations are projected for 4 x 40 Gb/s and 2 x 80 Gb/s, which should be
obtained by the end of 2001 and in the middle of 2002, respectively.

A detailed investigation has been projected for the All Optical Wavelength Converters
(AOWC), which are likely to be key devices in future networks, in which they will
perform operations of routing and restoration. The typical configuration is a generic
point-to-point link with one AOWC inserted along the path. Some of the Wavelength
Division Multiplexing (WDM) channels entering the AOWC will be converted to different
channels, while the others will continue to the final destination.

Four different types of AOWCs were studied: three of them are based on nonlinear
wave interactions in a Semiconductor Optical Amplifier (SOA), a Periodically Poled
Lithium Niobate (PPLN) waveguide, and DS fiber (DSF), respectively, while the fourth
has a novel design based on nonlinear effects, such as Nonlinear Polarization Rotation
(NPR) in quantum well semiconductors.
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In this article we report the main results from laboratory experiments performed in
the framework of this project, in particular we present the results obtained in single-
channel transmission at 40 Gb/s in links up to 500 km long and in the presence of a
wavelength conversion of the signal.

Design of the Line to Achieve the Longest Distance at 40 Gb/s

In the literature there are several articles dealing with 40 Gb/s transmission on single-
channel or on WDM systems [1-2]. These articles focus generally on Dispersion Managed
(DM) links with different kinds of maps on nonzero dispersion (ITU G.655) fibers.

However, the great part of fibers already installed are conventional single-mode
fibers, (ITU G.652) that have a high value of chromatic dispersion, and it would be very
important to be able to improve the capacity of systems with such fibers.

A preliminary analysis should deal with the choice of the signal format. However,
it is recognized [3] that for terrestrial 40 Gb/s systems on G.652 and long amplifier
spacing (>80 km), the return to zero (RZ) format guarantees the best performances. As
a consequence, we have limited our analysis to RZ systems and, among the compen-
sation methods presented in literature, we focus our analysis on two of them: periodic
compensation and all-at-the-end compensation. Periodic compensation has been already
investigated [1-3], coming to the conclusion that the system’s best performances can be
achieved introducing a small prechirp at the beginning of the link. On the other hand,
the all-at-the-end compensation scheme has been introduced quite recently [3] and is
based on the transmission of very short RZ pulses that are rapidly dispersed and permit
reduction of the effects of self-phase modulation (SPM). From theoretical studies, it has
been observed that the best DM configurations to achieve the highest capacity are the
ones reported in Figure 1.

Figure 1(a) refers to periodic post dispersion compensation, which can be modi-
fied adding an initial prechirp and a final postchirp, shown in Figure 1(b). Figure 1(c)
corresponds to the all-at-the-end dispersion compensation scheme.

Figure 1. Schematic of the link. DCU stands for dispersion compensation unit. Variable optical
attenuators are placed after the amplifiers to change input power. (a) Periodic post compensation
scheme; (b) periodic post compensation with prechirp and postchirp; (c) all at the end compensation.
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Numerical simulations have shown that scheme (b) is the one that produces the best
performance. However very good results can be achieved by using scheme (c), which is
much more easily reached in practice.

The amplifier spacing was chosen as 100 km since it is a standard requirement for
high-capacity terrestrial systems.

Experiments on Single-Channel OTDM Transmission at 40 Gb/s

Laboratory experiments have been performed in Pirelli Labs, and so far the investigation
has involved the transmission with Optical Time Division Multiplexing (OTDM) tech-
nique, in which an optical signal at 10 Gb/s is optically multiplexed at 40 Gb/s using
a bit interleaver device as shown in Figure 2. In the last year of the project (2002), a
4 x 10 Gbit/s to 1 x 40 Gbit/s Electrical Multiplexer (EMUX) will be used; this device
has been fabricated, packaged, tested, and is ready to be inserted in the transmission
experiment as described in Section 5.

The OTDM receiver, shown in Figure 2, consists of three main parts: an electro-
adsorption modulator, a 10 Gb/s receiver, and a 40 Gb/s clock recovery. The clock
recovery consists of a photodiode and electronics circuits that are able to produce a
signal clock at 40 Gb/s that drives the electro-absorbtion modulator, permitting it to
extract, at optical level, a signal at 10 Gb/s from a 40 Gb/s one. The resulting 10 Gb/s
signal is detected by a conventional 10 Gb/s receiver. Also this OTDM receiver will be
replaced by one based on the Electrical Time Division Multiplexity (ETDM) when the
Electrical Demultiplexing (EDEMUX) will be packaged and tested.

We have considered the transmission over two kinds of fibers: G.652 step-index
fibers (8, = —20 ps2/km, y = 1.3 W 'km™!, & = 0.25 dB/km), and G.655 nonzero
dispersion ones (B2 = —5 ps2/km, y = 1.5 W 'km~!, & = 0.25 dB/km).

We mounted Sumitomo N-DCFM and Lucent HSDK as compensating fibers in G.652
and G.655 links, respectively. The mean characteristics of each nominal 100-km span
composing the laboratory link are reported in Table 1. In both the G.652 and G.655
links, —23 ps/nm is the minimum available compensating step, thus we compensated for
chromatic dispersion within 0.3% and 1% accuracy for G.652 and G.655, respectively.

In the case of periodic postcompensation, the optimum prechirp values turned out to
be —78 and —47 ps/nm for G.652 and G.655, respectively; in terms of 8, they correspond
to 60 and 100 ps?/km, which are in good accordance with the numerical results reported

clock Pulse Pattern Generator
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i : data

! | stream

ML laser Electro-Optid 10/40 Gbis link
10 GHz, 5ps modulator fiber bit interleave

link 40 Gb/s|
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40 Gb/s
clock rec.

Figure 2. Schematic of the OTDM transmitter (upper part) and of the receiver (lower part).
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Table 1

Mean characteristic values of each span with the respective compensating section

(the reference wavelength is 1552.52 nm)

G.652 G.655
Line span Loss (dB) 22 22
Dispersion (ps/nm) 1675 434

Dispersion slope (ps/nm?) 6.7 8.5
Compensating section Loss (dB) 14 5
Dispersion (ps/nm) —1677 —439

Dispersion slope (ps/nm?) —3.8 —2.4

in Zitelli et al. [2]. The experiment was performed with a Pritel source having 10 Gb/s
pulse train with a Tpwym pulse duration equal to 5 ps.

The signal average power at 40 Gbit/s along the line was optimized to achieve the
best performance. In particular, the EDFA at the input of each fiber span (see Figure 1)
were set to give an average power of 8 dBm, the optimum value found by numerical
simulation results reported in Zitelli et al. [2]. The input power at each of the DCF fibers
in case (a) and (b) was set to 2 dBm. Higher input power cannot be used due to the
manifestation of Kerr impairment in DCF fibers.

In Figure 3 we report the Bit Error Rate (BER) versus the received power for different
link distances of the G.652 link by using scheme (b). For (a) and (c) results are not shown
since the performance was in worse agreement with the theoretical results of Zitelli et al.
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Figure 3. BER versus received power for different lengths of G.652 link.
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Figure 4. Eye diagram at the 500 km output of the link with G.652 fibers.

[2]. We can see that at 400 km only a small penalty is present with respect to the back-
to-back case, while at 500 km the penalty is larger (about 2 dB), even if no error floor
behavior is observed. In Figure 4, the eye diagram is reported for the 500 km distance.

Experiments were performed also on the G.655 High End Fibers (HEF), and the
results are reported in Figure 5. Due to the lower chromatic dispersion value of the
G.655 fibers and to the shortest distance of the Dispersion Compensating Fibers (DCF)
the performance was much better and at 500 km only a weak penalty was present as
shown in Figure 5. In Figure 6 the eye diagram after 500 km is reported.
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Figure 5. BER versus received power for a link encompassing G.655 fibers.
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Figure 6. Eye diagram at the output of a G.655 link 500 km long.

It has to be pointed out that we did not use any kind of forward error correction
and, as a consequence, we expect that an improvement in the transmission performance
could be obtained by using such a technique.

40 Gb/s Transmission with Wavelength Conversion

It is well known that wavelength conversion will be one of the fundamental techniques
for the implementation of future networks. As reported in the introductory section, in this
project four different AOWCs are investigated. While the NPR and DSF devices are still
in too preliminary a state for the test at 40 Gb/s, devices based on SOA and on PPLN
have already shown fantastic results in the transmission tests. In the following discussion,
we report results on the transmission of a signal after its wavelength conversion.

Wavelength Conversion Based on PPLN

Figure 7 is the photograph of the PPLN AOWC and Figure 8 presents its efficiency. In
Figure 9, we report the BER versus received power at different distances for a signal that
is wavelength converted by a PPLN at the link input. The link consists of G.655 fiber
compensated by means of DCF fibers and optical amplifiers located every 100 km. As
shown in Figure 9, after 500 km the performance is very good and no floor behavior is
observed.

Figure 7. PPLN wavelength converter.
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Figure 8. Efficiency of a PPLN wavelength converter.

Wavelength Conversion Based on SOA

A simple scheme of the wavelength converter is depicted in Figure 10. The modulated
signal is coupled with a cw pump source and injected into the SOA. A band pass filter
selects the converted field prior to injecting it into the transmission line. The mean
intensities used for the experiment have been P; = 2 dBm at 1557 nm and P, = 12 dBm
at 1555.1 nm. The pulse Full Width Half Maximum (FWHM) is 5 ps. The output spectrum
of the SOA is shown in Figure 11. The three marked peaks are the signal (right), the pump
(center), and the converted signal (left). It is worth noting that the signal is broadened
by self-phase modulation experienced as the signal passes through the SOA, and the
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Figure 9. BER versus received power at different distances for a signal that is wavelength
converted by a PPLN at the link input.
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Figure 10. Scheme of the wavelength conversion configuration used for the transmission measure.

Passband
filter

pump shows over-imposed peaks spaced by 40 GHz, probably originated by cross-phase
modulation induced by the strong modulated signal. Measured over a band of 2 nm, the
converted signal has an intensity of P, = —12.8 dBm at 1553.4 nm.

Once filtered, the converted signal injected into the transmission line is as in the
righthand part of Figure 12. The lefthand side of Figure 12 is the eye diagram of the
incoming signal at 40 Gb/s. In the righthand part of the same figure, the eye diagram of
the converted signal at 40 Gb/s is shown together with one of its 10 Gb/s demultiplexed
tributaries.

In Figure 13, we report the eye diagrams of the converted signal at 40 Gb/s after
100 km (left) and 3 x 100 km (right) transmission over the HEF (G.655) fiber link. The
launch mean power was about 8 dBm of optical input in each span and the chromatic
compensation ratio, obtained by means of dispersion compensating fiber (DCF), was set
to 100%. The signal-to-noise ratio at the receiver was in the two cases 21 dB and 18 dB
over 2 nm optical bandwidth, respectively.

In Figure 14, we finally show the measured bit-error-rate after the propagation over
1 x 100 km, 2 x 100 km, and 3 x 100 km of HEF fiber. The two BTB Pritel curves
are two baselines taken for two different signal-to-noise ratios of the original signal at
the receiver input. The penalty introduced by the conversion method (BTB 23.5 dB) is
1.5 dB with respect to the baseline; a 2 dB penalty is introduced by the transmission of
the converted signal up to 300 km.

Figure 11. Optical spectrum analyzer trace of the SOA output, the total output recorded with an
optical bandwidth of 0.1 nm.
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Figure 12. Optical eye diagrams. The 40 Gb/s input signal (left); the converted signal with one
of the demultiplexed 10 Gb/s component (right).
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Figure 13. Optical eye diagrams at 40 and 10 Gb/s for the converted signal after 100 km (left)
and 300 km (right) transmission.
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Figure 14. BER curves. In the legend, BTB indicates the back-to-back curves taken at different
signal-to-noise ratios. The signal-to-noise ratio after each transmission distance is also indicated.
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Figure 15. Wavelength conversion based on the Kerr effect in DS fiber at 2.5 Gb/s.

Preliminary Results of the Wavelength Conversion Based on DSF

Wavelength conversion of a signal can be achieved by exploiting the nonlinear Kerr effect
in DS fibers. The most interesting result, which has been experimentally demonstrated
in this investigation, is that, by propagating the signal at zero chromatic dispersion, it is
possible to have simultaneously several replicas of the signal that can cover practically
the whole ITU grid as shown in Figure 15, in which a 2.5 Gb/s signal was converted
after 10 km of DS fiber. Another important result shown by the experiments is that the
signal after the conversion presents a reshaping behavior, indicating that such a device
can be also used as a 2R device.

Preliminary Results on the Wavelength Conversion Based on Quantum
Well Nonlinearities

Three all-optical switching mechanisms for wavelength conversion in multiple quantum
well (MQW) devices have been considered [4-6]:

e field screening in reverse biased p-i(MQW)-n devices,
® excitonic absorption bleaching in ion-implanted MQWs, and
® nonlinear polarization rotation (NPR).

The transmission (or reflection) of an all-optical switch transiently increases on the appli-
cation of an optical control pulse. For the purpose of wavelength conversion the control
pulses are the data stream at the input wavelength, and the transmission change is used
to modulate a CW signal at the output wavelength, which is incident on the same device.
The switching mechanisms used are noninstantaneous, resulting in varying degrees of
pulse reshaping.

Field screening wavelength conversion in a resonant p-i(MQW)-n device with a
200 pum diameter optical window fabricated from a wafer incorporating a 50-period
Q1.6/Q1.1 InGaAsP MQW and a 16-period distributed Bragg reflector (DBR) has been
demonstrated at the University College of London (UCL). A sample result, with the out-
put wavelength at the cavity antiresonance, is illustrated in Figure 16(a). The device was
excited with 2 ps control pulses. CW light was simultaneously reflected from the same
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Figure 16. Measurements of field screening devices. (a) Wavelength conversion in a 200 um
diameter optical window device with 16 V reverse bias and 3.4 pJ control pulses at 1542 nm. The
output wavelength was 1542 nm; (b) time resolved recovery of a 20 um diameter optical window
device measured at 1539.2 m with 20 V reverse bias.

point on the device. The reflected CW light was observed with a fast photodetector and
a 20 GHz bandwidth sampling oscilloscope. At output wavelengths away from the cav-
ity antiresonance wavelength the magnitude of the transmission change decreased, and
magnitudes 18% and 10% were measured at 1538 nm and 1544 nm, respectively. Fig-
ure 16(b) shows dynamic transmission change measurements of a resonant p-i(MQW)-n
device with a 200 um diameter optical window. A standard pump-probe configuration
was used. The device was fabricated from the same wafer as that used for the wavelength
conversion experiment described above. The 50% recovery time with 2.5 pJ pump pulses
in 30 ps. This is comparable to the 28 ps time which we have previously reported in a
nonresonant p-i(MQW)-n device [6], to our knowledge the fastest yet reported in this
material system.

Faster recovery times can be obtained using excitonic bleaching in ion-implanted
MQW material, and we have obtained recovery times of less that 3 ps in such devices,
showing excellent potential for 80 Gb/s operation.

NPR-based optical switching relies on the circular birefringence which is induced in
a MQW layer when it is excited by a circularly polarized control pulse. This birefringence
is a consequence of the selective excitation of either spin-up or spin-down carriers by
the control pulse. Following such an excitation, the carrier population relaxes to a spin
balanced state. For wavelength conversion linearly polarized CW light at the required
output wavelength is transmitted through the MQW layer and then, under small signal
conditions, blocked by an appropriately aligned analyzer. Birefringence due to excitation
of the MQW by a circularly polarized pulse at the input wavelength will rotate the CW
signal such that some part of it is transmitted through the analyzer. Switching based
on this technique has been demonstrated at UCL in a 60 period Q1.6/Q1.1 InGaAsP
transmission structure. Results are shown in Figure 17.

Electronics Devices Operating at 40 Gb/s

In the ATLAS project several electronic devices have been foreseen to be fabricated for
40 Gb/s transmission. Since all test signals adopted in this project will be tributaries at
10 Gbit/s, several electronic components not yet available on the market have been de-
veloped, including single XOR gates and D FlipFlops, and complete 40 Gbit/s multiplex
and demultiplex MMICs. All those parts made an InP HBT technology directly compat-
ible with photodiodes working beyond 40 Gbit/s. In a first step, specific chips have been
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Figure 17. Time resolved measurements of NPR switching.

fabricated and then hybridized in a package. In a second step, the specific parts will be
monolithically integrated in order to provide more complex functions on a single chip.

The complete experimental setup for 40 Gb/s ETDM transmission foresees the fol-
lowing electronics devices: 40 Gb/s EMUX, a 40 Gb/s PRBS generator (that drives the
EMUX) for the transmitter, and 40 Gb/s receiver with 40 to 10 Gb/s electrical demulti-
plexer (EDEMUX).

Now we report the main results on some electronics key devices that have been
already tested.

Packaged 4 x 10:1 x 40 Gbit/s Multiplexer with Clock Multiplier

A complete 4 x 10:1 x 40 Gbit/s multiplexer with clock multiplier has been fabricated
and tested.

An SMB connector was chosen for the power supply connection instead of using
soldering lids as usual. It allows the module to be a self-containing component and
there is no need of soldering irons to make the power supply connection. All the other
connectors are K type which provide a bandwidth larger than 40 GHz to all signal paths.
The position of the pads on the chip was chosen in such a way that the connections in the
final package can be more easily manipulated, i.e., inputs are in one side of the package,
outputs in the other side, and clock signals in the middle. This arrangement helps in the
reduction of cross talk between outputs and inputs.

In Figure 18, we report the 40 Gb/s eye obtained at the output of a 4-to-1 multiplexer
chip when applying 4 noncorrelated 10 Gb/s PRBS patterns (32 bits) at the 4 inputs. Time
scale: 10 ps/div; amplitude scale: 100 mV/div.

40 Gbit/s DEMUX

A chip performing the electronics demultiplexing of a 40 Gb/s signal in four 10 Gb/s has
been fabricated and tested. The demultiplexer chip was developed to be fully compatible
with the multiplexer chip described in the previous section.

A 40 Gb/s measurement setup was specially built for the characterization of the
1-to-4 demultiplexer. All four outputs could be monitored simultaneously. The generated
40 Gb/s pattern was greatly corrupted with noise due to limitations of the Fraunhofer
2-to-1 multiplexer specially used in this case. The demultiplexer was able to extract the
four 10 Gb/s sequences having a very close 40 Gb/s input eye, Q < 3.
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40 Gb/s Receiver

The 40 Gb/s receiver consists of four main parts: photodiode, an amplifier with a clock
output, an active filter [7], and a post amplifier. We have foreseen three different packages
as reported in Figure 19.

Photographs of three fabricated packages of the receiver are reported in Figures 20
and 21. The complete receiver is now under test.

Other Activities in the Framework of the ATLAS Project

Other optoelectronics devices have been fabricated or are under study in this project with
the main aim of improving transmission. Among these, we note the fabrication of a bit
interleaver and a study for the fabrication of a polarization mode dispersion compensator
(PMDQ). Polarization mode dispersion (PMD) is one of the most critical impairments for
40 Gb/s transmission and, hence, an important investigation has been conducted on this
topic and in particular on its measurement. A novel instrument to measure the PMD has
been fabricated and is based on the reflectometric process. Such an instrument has the
advantage of requiring only one end of the fiber link and, as a consequence, is particularly
suitable for field measurements.

For 40 Gbit/s a differential group delay higher than 5 ps could be strongly degrading
for our transmission. However, measurements made on our fibers showed values much
lower than 5 ps.

Another activity in the framework of the ATLAS project is the preparation of novel
normative for the ITU regarding system and networks operating at 40 Gb/s.
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Figure 21. Photograph of the filter with detail of the GaAs MMIC filter on the right.

Conclusion

In this work we have shown the main experimental results on the transmission at 40 Gb/s
including the wavelength conversion process. The results show that the transmission of
40 Gb/s signals, after their wavelength conversion, can be achieved up to 500 km in
links with long amplifier spacing (100 km). Such preliminary results show the possibility
of implementing wide transport networks based on the transmission at 40 Gb/s with
wavelength conversion.
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